Browsing by Author "Mir, Reza"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Forward modeling and 3D inversion of electromagnetic data collected over the McArthur River uranium deposit in the Athabasca Basin, Canada(2022-03-01) Mir, Reza; Fullagar, Peter; Darijani, Mehrdad; Smith, Richard; Scott, Shawn; Ross, Martin; Shamsipour, Pejman; Chouteau, Michel; Ansdell, Kevin; Gouiza, MohamedDetection and assessment of the deeply buried high-grade uranium deposits in the Athabasca Basin rely on geophysical methods to map conductive rocks. Variable Quaternary surface cover can mask the anomalous signals from depth and affect the interpretation of inverted conductivity models. We present the analysis of several electromagnetic (EM) modeling studies and two field data sets to demonstrate the effects of varying Quaternary cover resistivity and thickness, on the ability to resolve the parameters of underlying sandstone, alteration, and basement conductors. Synthetic data, assuming a typical shallow EM sounding system and realistic resistivities found in the Athabasca Basin, indicate that resistivity and thickness parameters of the Quaternary cover can be separately recovered in cases in which this cover is more conductive than the underlying sandstone, but not when the cover is significantly more resistive. A 3D modeling study indicates that by using airborne EM data, it is possible to detect a basement conductor of 20 S at a depth of at least 600 m below the surface, even in the presence of Quaternary cover thickness variations of the up to 20% (40–60 m). Furthermore, although Quaternary cover variations and deeper sandstone alteration can produce comparable anomalous signal amplitudes in a time-domain EM response, their effects are most visible in distinctly separate time windows. Ground-penetrating radar and other data to characterize the Quaternary cover in the McArthur River area indicate that this cover consists mostly of sandy tills ranging in thickness from 0 to 117 m. Constrained 3D inversion of an airborne EM data set from the same area indicates basement conductors consistent with the depth and location of a known fault. Elevated conductivity in the sandstone by up to a factor of two over the background values could indicate possible alteration.Item Structural complexity inferred from anisotropic resistivity: Example from airborne EM and compilation of historical resistivity/induced polarization data from the gold-rich Canadian Malartic district, Québec, Canada(2019-03) Mir, Reza; Perrouty, Stéphane; Astic, Thibaut; Bérubé, Charles L.; Smith, Richard S.Structurally complex zones within orogenic terranes typically correspond to areas where there is interference between multiple fold generations and are known to be favorable pathways for fluid flow because of their higher permeability. In the Canadian Malartic district, gold anomalies have been linked with zones of structural complexity that have been quantified by outcrop bedding orientation measurements and calculation of bedding variance maps. In this work, historical apparent resistivity and induced polarization data in the Canadian Malartic district were reprocessed and combined with new surveys to create a compilation of inverted chargeability and resistivity, which were then interpreted together with airborne electromagnetics and outcrop structural data. The results indicate chargeability anomalies, up to five times the background value, associated with the sulfide mineral content in monzodioritic dikes that are thickened in folds and hydrothermally altered. Although the airborne apparent half-space resistivity is mostly sensitive to conductive surficial cover, the inverted ground resistivity method is sensitive to deeper structure and likely represents bedrock signal at depths greater than 25 m. Inverted ground resistivity exhibits strong anisotropy in areas of subvertical bedding, where measured resistivities can vary by up to a factor of two, over the same location, depending on whether the survey lines are perpendicular or parallel to the strike of bedding. This result is observed at scales of 50 cm up to 100 m. Analysis of inverted ground resistivity together with bedding variance indicates a strong correlation between structurally complex zones with high bedding variance and a decrease in resistivity at depths greater than 25 m. This suggests that in places where the presence of disseminated gold cannot be directly detected, or where the outcrop exposure is limited due to overburden cover, geophysical data may still succeed in identifying structural complexity zones that could potentially host mineralization.