ETDs: Doctoral Theses
Permanent URI for this collectionhttps://laurentian.scholaris.ca/handle/10219/480
Browse
Browsing ETDs: Doctoral Theses by Subject "Abitibi greenstone belt"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Assessing the origin of some representative Archean-Paleoproterozoic porphyry Cu ± Au deposits(2021-06-04) Meng, XuyangMost known porphyry Cu ± Au deposits are exclusively associated with oxidized and sulfurrich Phanerozoic arc-related magmas, but Precambrian analogues are rare. The genesis of some rare examples of such deposits (e.g., Tongkuangyu in Trans-North China Orogen) remains debated, and in particular, it remains unclear as to whether similar metallogenic processes that typify the Phanerozoic deposits also operated in the Precambrian. To resolve these issues, three study areas were chosen to variably characterize relevant aspects of these deposits in the context of porphyry-type metallogenies (i.e., the nature of mineralization, the redox states and volatile element abundances of the causative magmas): (1) the ~2.1 Ga Tongkuangyu deposit in Trans-North China Craton; (2) the ~1.88 Ga Haib porphyry Cu deposit, Southern Namibia; and (3) representative porphyry-type Cu ± Au deposits (Côté Gold, St-Jude, and Croxall) in the ~2.7 Ga Abitibi subprovince. At the Tongkuangyu deposit, remapping of the distribution of the host rocks, alteration, and mineralization support a porphyry-type model where ore formation occurred at ~2.1 Ga. This age is significantly later than the host granodiorite porphyry (~2.18 Ga) and schists (~2.5–2.2 Ga) and indicates that porphyry-type mineralization need not be linked directly to a causative magma exposed at surface. Instead, the latter is interpreted to be represented by subjacent porphyritic stocks and dikes. At the Haib deposit, the host calc-alkaline plutonic rocks and mineralization are dated to ca. 1886–1881 Ma. Estimations of magmatic fO2 and S, based on zircon geochemistry, apatite µXANES spectra, and apatite S analysis, demonstrate that oxidized, sulfur-rich arc magmas associated with porphyry Cu mineralization already existed in the late Paleoproterozoic. In addition, zircon Hf-O isotopes and whole-rock geochemistry support magmas of mantlederivation with minor crustal contributions that experienced amphibole ± plagioclase fractionation. These features of the Haib magmas are thus similar to those for Phanerozoic porphyry Cu deposits. For the ~2.7 Ga TTG (tonalite-trondhjemite-granodiorite-diorite)-related porphyry-type Cu ± Au deposits in the Abitibi subprovince, whole-rock geochemistry, zircon Hf-O isotopes, apatite S contents, and multiple oxybarometers suggest that variable magmatic origin and fO2 for the causative magmas. The rarity of porphyry-type Cu-Au deposits in these older settings may be attributed to either location restriction of these favorable metallogenic conditions and/or preservation, or exploration bias.Item Gold metallogeny of the southern Swayze Area, Abitibi Greenstone Belt(2021-04-29) Hastie, Evan Carman GeorgeUnderstanding ore forming processes and their control on mineralization is essential for the proper classification of Archean, and also younger, Au deposits and mineral exploration success. This study evaluates Archean Au-forming processes using examples across the Superior Province (Canada), with an emphasis on the Swayze area in the Abitibi greenstone belt. It combines detailed field mapping with various discriminants (e.g., in-situ stable isotopes, whole rock and trace-element geochemistry, LA-ICP-MS elemental mapping and chemistry of native gold) to differentiate between orogenic and intrusion-related Au deposits. Based on previous work and newly generated data on 44 deposits, the dataset suggests that Ag, Te and Hg are the only metals consistently associated with Au across different deposit types. Although these metals represent universal elemental vectors for Au exploration, other criteria such as rock and mineral textures, timing of Au mineralization, stable isotope data, and bulk geochemistry must be used to differentiate between Au-deposit types. An important finding is the recognition of a distinct subset of intrusion-related Archean deposits related to sanukitoid-type magmatism. These deposits, generally younger than 2690 Ma, predate shearing and are characterized by Te and Hg elemental associations, relatively high fO2, and δ34S ≤ -5‰. They differ from other intrusion related deposits in terms of their timing and geochemistry and, thus, require a different exploration strategy. Of importance to both academia and industry is the origin of late-stage high-grade Au zones in many deposits. This study suggests such zones result from coupled dissolution-reprecipitation of Au-bearing sulfides and generation of polymetallic Au melts and/or Au nanoparticles, which aggregate as coarse native gold. Both of the processes can elegantly explain ultra high-grade gold zones and are widely applicable to many Au deposits formed throughout Earth’s history.