Earth Sciences / Sciences de la Terre
Permanent URI for this communityhttps://laurentian.scholaris.ca/handle/10219/2111
Browse
Browsing Earth Sciences / Sciences de la Terre by Subject "3D"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Geophysical properties of an epithermal Au-Ag deposit in British Columbia, Canada(2018-11-01) Abbassi, Bahman; Cheng, Li Zhen; Richards, Jeremy; Hübert, Juliane; Legault, Jean; Rebagliati, Mark; Witherly, KenThe Newton Au-Ag deposit is an intermediate sulfidation state epithermal system in British Columbia, Canada. Multiple types of geophysical data are interpreted and evaluated with drillcore petrophysical, geochemical and geological observations to better understand the geophysical signature of the Newton epithermal system. Airborne γ-ray datasets show elevated emission counts of K, eTh, and eU over the Newton epithermal system that are caused by hydrothermal alteration. Drillcore γ-ray measurements also show high potassium concentrations related to the K-rich phyllosilicates in the form of argillic and quartz-sericite alteration assemblages. Magnetization vector inversion (MVI) is used to recover an unconstrained 3D magnetization vector model of the system on regional and deposit scales. The regional MVI has resolved a deep concentric shaped low magnetic zone that is interpreted as a porphyry system beneath the epithermal deposit. At the deposit scale, 3D direct current (DC) resistivity and induced polarization (IP) inversion, and unconstrained MVI revealed finer details of epithermal system architecture. Cooperative DC/IP and magnetic inversion, at the deposit scale, constrained the magnetic susceptibility model and recovered a more precise susceptibility image of the epithermal system that is well-matched with borehole geology. The integrated geophysical interpretation helped to resolve several 3D latent geological features in places without direct access to drillcore samples. We identified four petrophysical domains based on the three cooperatively inverted physical properties, including electrical resistivity, IP chargeability, and magnetic susceptibility. The combined geophysical models differentiated porphyritic intrusions (chargeability/susceptibility lows), disseminated sulfides (resistivity lows and chargeability highs), a Cu-rich zone in mafic volcanic rocks (susceptibility/chargeability highs and resistivity lows), and a Au-Ag-Cu-rich zone with silicification in felsic volcanic rocks (chargeability/susceptibility lows and resistivity highs). These petrophysical domains also provide useful exploration vectors for identification of similar epithermal systems.Item Regional 3D geophysical investigation of the Sudbury Structure(Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2015-04-22) Olaniyan, O.; Smith, Richard S.; Lafrance, B.The 3D geologic and structural setting of the Sudbury Structure was predicted by an integration of surface and subsurface geologic data with 2.5D modeling of high-resolution airborne magnetic and gravity data using 3D GeoModeller software. Unlike other CAD-based 3D software, GeoModeller uses the field interpolator method, whereby contacts of rock units are assumed to be equipotential surfaces, whereas orientation data determine the gradient and direction of the surfaces. Contacts and orientation variables are cokriged to generate 3D continuous surfaces for each geologic unit. Our 3D geologic model was qualitatively evaluated by forward computing the predicted gravity response at 1 m above topography and by comparing this response to the measured gravity field. Large-scale structures within the Onaping Formation and Archean basement, which overlie and underlie the Sudbury Igneous Complex (SIC), respectively, were not the cause of the linear gravity high in the center of the Sudbury Structure. We suggested that the deformation of the initial circular SIC may have commenced under the Sudbury Basin due to the reversal of the normal faults related to the Huronian rift system during the Penokean orogeny, therefore resulting into a north verging fold at the base of the SIC in the south range. This new interpretation was consistent with the magnetic and gravity data and honoured most of the significant seismic reflectors in the Lithoprobe seismic sections.