Identifying the anti-inflammatory potential of α7 nicotinic receptor silent agonists in human blood immune cells
dc.contributor.author | Soto, Eduardo Carlos | |
dc.date.accessioned | 2022-04-08T15:24:00Z | |
dc.date.available | 2022-04-08T15:24:00Z | |
dc.date.issued | 2020-09-03 | |
dc.description.abstract | The recent development of α7 nAChR specific molecules, referred to as silent agonists, elicit prolonged channel closing with minimal channel activation and are thought to provoke unique nAChR-dependent metabotropic signaling cascades. This study assessed the anti-inflammatory potential of several silent agonists in modulating lipopolysaccharide (LPS)-induced immune responses in human blood immune cells. Fresh whole blood from healthy volunteers was pre-treated at different time points with silent agonists followed by a 24hr LPS stimulation. Cytometric bead arrays (CBAs) were used to quantify the levels of cytokines IL-1β, IL-6, IL-10, IL-12, and TNF-α in sample supernatants. Then, BioPlex phosphoprotein kits were used to measure phosphorylation levels of various signaling pathway proteins (NF-kB, Akt, ERK1/2, STAT1, and STAT3). For this experiment, peripheral blood mononuclear cells (PBMC) and monocytes isolated from PBMCs were treated with a silent agonist during the LPS stimulation (15-120min). Finally, cell phenotyping studies were carried out in PBMC cultures treated with silent agonists and stimulated with LPS (48hrs). The markers CD14, CD16, CCR2, CD36, CD11c, and HLA-DR were studied. We report that the silent agonist pCF3 diEPP significantly downregulated the secretion of pro-inflammatory cytokines and phosphorylation of signaling proteins. We did not observe any significant findings with our cell phenotype studies. Overall, our data show that silent agonists modulate LPS-induced release of pro-inflammatory cytokines and signaling events in human peripheral blood immune cells. Silent agonists selective for α7 nAChRs may thus offer a new therapeutic strategy for the treatment of inflammatory diseases. | en_US |
dc.description.degree | Master of Science (MSc) in Biology | en_US |
dc.identifier.uri | https://laurentian.scholaris.ca/handle/10219/3848 | |
dc.language.iso | en | en_US |
dc.publisher.grantor | Laurentian University of Sudbury | en_US |
dc.subject | Nicotinic receptors | en_US |
dc.subject | anti-inflammatory | en_US |
dc.subject | human blood | en_US |
dc.subject | silent agonists | en_US |
dc.subject | novel molecules | en_US |
dc.subject | immune resopnse | en_US |
dc.subject | immunology | en_US |
dc.subject | acetylcholine | en_US |
dc.subject | drug | en_US |
dc.subject | flow cytometry | en_US |
dc.subject | cytokines | en_US |
dc.subject | signaling | en_US |
dc.subject | surface marker | en_US |
dc.subject | treatment | en_US |
dc.title | Identifying the anti-inflammatory potential of α7 nicotinic receptor silent agonists in human blood immune cells | en_US |
dc.type | Thesis | en_US |