Mapping lateral changes in conductance of a thin sheet using time-domain inductive electromagnetic data

dc.contributor.authorKolaj, M.
dc.contributor.authorSmith, Richard S.
dc.date.accessioned2019-08-30T20:19:05Z
dc.date.available2019-08-30T20:19:05Z
dc.date.issued2013-11-05
dc.descriptionThis paper is © 2019 Society of Exploration Geophysicists. The posting is available free of charge and its use is subject to the SEG terms and conditions: https://seg.org/Terms-of-Useen_US
dc.description.abstractWith the inductive electromagnetic geophysical method, the laterally varying conductance of thin sheet models can be estimated either through a direct transform of the measured data or through inversion. The direct transform (called the simplified solution) does not require grid or line data and is simple enough to be performed in the field because the conductance at a location is calculated directly from the ratio of two measured magnetic fields (the vertical spatial and temporal derivative of the vertical magnetic field) at that location. However, the simplified solution assumes that the secondary horizontal magnetic fields are zero and/or that the sheet has a uniform conductance. Our nonapproximate solution (called the full inversion) does not make these assumptions, but requires gridded data, measurements of the secondary horizontal magnetic fields, and more complicated inversion algorithms. Through forward modeling, we found that the full inversion provides better results than the simplified solution when the spatial gradient of the resistance is strong and/or when the horizontal magnetic fields are large. Because the simplified solution may be preferable due to its simplicity, we introduce two unreliability parameters, which assess the unreliability of the conductance calculated using the simplified solution. A comparison of the simplified solution and full inversion in a fixed in-loop survey collected overtop a dry tailings pond in Sudbury, Ontario, Canada, revealed that there were small differences around large conductance contrasts, which coincided with elevated unreliability parameters. The simplified solution is recommended if fast in-field interpretations are required, or additionally, as a first-pass survey that can be performed with sparse station spacing to identify areas of interest. Denser grid data can then be collected, for the more reliable full inversion, over areas of interest and/or zones where the simplified solution is expected to be unreliable as predicted by the unreliability parameters.en_US
dc.description.sponsorshipNSERC, Vale, Sudbury Integrated Nickel Operations, Wallbridge Mining, KGHM International, the Centre for Excellence in Mining Innovation and Abitibi Geophysicsen_US
dc.identifier.citationKolaj, M., and Smith, R., 2014, Mapping lateral changes in conductance of a thin sheet using time-domain inductive electromagnetic data: Geophysics, 79(1), E1-E10. doi: https://doi.org/10.1190/GEO2013-0219.1en_US
dc.identifier.issn0016-8033
dc.identifier.issn1942-2156
dc.identifier.urihttps://laurentian.scholaris.ca/handle/10219/3330
dc.language.isoenen_US
dc.publisherSociety of Exploration Geophysicistsen_US
dc.relation.isversionofhttps://doi.org/10.1190/GEO2013-0219.1
dc.subjectelectromagneticsen_US
dc.subjectenvironmentalen_US
dc.subjectinterpretationen_US
dc.subjectcase historyen_US
dc.subjectinversionen_US
dc.titleMapping lateral changes in conductance of a thin sheet using time-domain inductive electromagnetic dataen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KolajSmith2014_geo_full.pdf
Size:
4.08 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.52 KB
Format:
Item-specific license agreed upon to submission
Description: