Rost, Philip Rost2019-12-182019-12-182019-10-30https://laurentian.scholaris.ca/handle/10219/3386SNO+ is a kilo-tonne scale neutrino detector utilizing much of the same hardware that was used during the SNO experiment. The SNO+ experiment will be conducted using three different target media in three phases: water phase, pure scintillator phase and tellurium loaded scintillator phase. Through all phases SNO+ will be sensitive to a large neutrino burst from a nearby supernova. Data bursts can be caused by a supernova neutrino burst or other physical phenomena such as electronic pickup, static discharge, equipment malfunctions and unintended light injection. This thesis examines data bursts which occurred during the light water phase commissioning of detector operation using a principal component analysis. The principal component analysis showed 3 major groupings within the analysed bursts: bursts during period of time with detector running issues, burst generated due to electronics break downs or light injection and bursts occurring during periods of time where the detector is operated in an abnormal running mode. The analysis in this thesis also shows that many of the data bursts were caused by detector running issues after some initial burst event. Since the state of the detector has been improved, a repetition of this study is recommended with more recent dataenSNO+water phasepure scintillator phasetellurium loaded scintillator phaseneutrino burstsupernovadata burstsSNO+ waterphase burst principal component analysis Thesis